Nicole Adelstein

Nicole Adelstein

Associate Professor
At SF State since 2015
Phone: (415) 338-2379
Location: TH 824


B.A. (2006) Reed College
Ph.D. (2012) UC Berkeley
Postdoc (2015) Livermore National Lab

Research Areas: Materials and Computational Chemistry

The Adelstein Research group seeks to understand and improve materials for electrochemical technologies, with a focus on Li-ion batteries. We study atomic-scale processes, such as diffusion, in battery materials, using first-principles (quantum mechanics) simulations. We run simulations on our 188 core computer-cluster and write Python-scripts to perform “big-data” analyses on our results. Currently, we are using molecular-dynamics simulations to identify the drivers of ionic-conductivity in the electrolyte component of the battery. Catastrophic failures in commercially available batteries are due to dendrite growth of Li across the liquid or polymer electrolyte, creating a Li-wire that shorts the battery. All solid state batteries, with a solid electrolyte, help protect against battery shorts, but solid superionic electrolytes with extraordinary Li-conductivity are still needed. Understanding ionic conductivity insulating materials used for many energy applications is a grand-challenge question in the field, the realization of which will revolutionize the energy market.

Latest Publications

K. M. Jew, V. T. B. Le, K. Amaral, A. Ta, N. M. Nguyen, M. Law, N. Adelstein, and M. L. Kuhn, “Investigation of the importance of protein 3D structure for assessing conservation of lysine acetylation sites in protein homologs” Frontiers in Microbiology 12:805181 (2022).

P.E. Weng, A. Gooyandeh, M. Tariq, T. Li, A. Godara, J. Valenzuela, S. Mancini, S.M.T. Yeung, R. Sosa, D. R. Wagner, R. Dhall, N. Adelstein, K. Kao, D. Oh “Microbe-Assisted Nanocomposite Anodes for Aqueous Li-ion batters” ACS Applied Materials & Interfaces 13(33) 39195-39204 (2021).

T. W. Heo, A. Grieder, B. Wang, M. Wood, T. Hsu, S. A. Akhade, L. Wan, L.Q. Chen, N. Adel- stein, and B. C. Wood, “Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach” npj Computational Materials 7 (214) (2021).

Z. Mehmedovic, V. Wei, A. Grieder, P. Shea, B. C. Wood, N. Adelstein, “Impacts of vacancy- induced polarization and distortion on diffusion in solid electrolyte Li3OCl” Philosophical Transactions of the Royal Society A. 379 (2211): 20190459 (2021).                                      

B. C. Wood, J. B. Varley, K. E. Kweon, P. Shea, A. T. Hall, A. Grieder, M. Ward, V. P. Aguirre, D. Rigling, E. Lopez Ventura, C. Stancill, and N. Adelstein, “Paradigms of frustration in superionic solid electrolytes” Philosophical Transactions of the Royal Society A. 379 (2211): 20190467 (2021).

P. Pennings, M. M. Banuelos, F. L. Catalan, V. R. Caudill, B. Chakalov, S. Hernandez, J. Jones, C. Okorie, S. Modrek, R. Rohlfs, N. Adelstein, “Ten simple rules for an inclusive summer coding program for non-CS undergraduates” PLOS Computational Biology 16 (9): e1007833 (2020).